Abstract

ObjectivesDiffusion tensor cardiovascular magnetic resonance (DT-CMR) interrogates myocardial microstructure. Two frequently used in vivo DT-CMR techniques are motion-compensated spin echo (M2-SE) and stimulated echo acquisition mode (STEAM). Whilst M2-SE is strain-insensitive and signal to noise ratio efficient, STEAM has a longer diffusion time and motion compensation is unnecessary. Here we compare STEAM and M2-SE DT-CMR in patients.Materials and methodsBiphasic DT-CMR using STEAM and M2-SE, late gadolinium imaging and pre/post gadolinium T1-mapping were performed in a mid-ventricular short-axis slice, in ten hypertrophic cardiomyopathy (HCM) patients at 3 T.ResultsAdequate quality data were obtained from all STEAM, but only 7/10 (systole) and 4/10 (diastole) M2-SE acquisitions. Compared with STEAM, M2-SE yielded higher systolic mean diffusivity (MD) (p = 0.02) and lower fractional anisotropy (FA) (p = 0.02, systole). Compared with segments with neither hypertrophy nor late gadolinium, segments with both had lower systolic FA using M2-SE (p = 0.02) and trend toward higher MD (p = 0.1). The negative correlation between FA and extracellular volume fraction was stronger with STEAM than M2-SE (r2 = 0.29, p < 0.001 STEAM vs. r2 = 0.10, p = 0.003 M2-SE).DiscussionIn HCM, only STEAM reliably assesses biphasic myocardial microstructure. Higher MD and lower FA from M2-SE reflect the shorter diffusion times. Further work will relate DT-CMR parameters and microstructural changes in disease.

Highlights

  • Diffusion tensor (DT) cardiovascular magnetic resonance (CMR) is used to obtain non-invasive measures of myocardial microstructure [1,2,3]

  • Within the slice imaged with DTCMR, all patients had areas of hypertrophy and Late gadolinium enhancement (LGE) in the septum but not in the lateral wall

  • M2-SE is feasible for systolic assessment, but has a high failure rate (60%) in diastole

Read more

Summary

Introduction

Diffusion tensor (DT) cardiovascular magnetic resonance (CMR) is used to obtain non-invasive measures of myocardial microstructure [1,2,3]. Parameters such as mean diffusivity (MD) and fractional anisotropy (FA) describe the freedom of water motion, and degree of myocardial microstructural organisation. Cardiomyocytes take a left-handed helical arrangement at the epicardium and progress smoothly through a circumferential orientation at the mesocardium to a right-handed helical arrangement at the endocardium. This microarchitecture is generally preserved through the cardiac cycle [4]. E2A is a measure of sheetlet alignment and the change in E2A between peak systole and diastole is known as sheetlet mobility [4]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.