Abstract

Abstract An analytical model has been developed to describe the diffusion-viscous stress coupling in the liquid phase during rapid solidification of binary mixtures. The model starts with a set of evolution equations for diffusion flux and viscous pressure tensor, based on extended irreversible thermodynamics. It has been demonstrated that the diffusion-stress coupling leads to non-Fickian diffusion effects in the liquid phase. With only diffusive dynamics, the model results in the nonlocal diffusion equations of parabolic type, which imply the transition to complete solute trapping only asymptotically at an infinite interface velocity. With the wavelike dynamics, the model leads to the nonlocal diffusion equations of hyperbolic type and describes the transition to complete solute trapping and diffusionless solidification at a finite interface velocity in accordance with experimental data and molecular dynamic simulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.