Abstract

Density functional theory (DFT) molecular dynamics (MD)-simulations were performed on cubic and tetragonal Na3PS4. The MD simulations show that the Na-conductivity based on the predicted self-diffusion is high in both the cubic and tetragonal phases. Higher Na-ion conductivity in Na3PS4 can be obtained by introducing Na-ion vacancies. Just 2% vacancies result in a conductivity of 0.2 S/cm, which is an order of magnitude larger than the calculated conductivity of the stoichiometric compound. MD simulations of halogen-doped cubic Na3PS4 suggest a practical route to introduce vacancies, where Br-doping is predicted to result in the highest bulk conductivity. Detailed investigation of the Na-ion transitions during the MD simulation reveals the role of vacancies and phonons in the diffusion mechanism. Furthermore, the orders of magnitude difference between the MD simulations and experiments suggest that macroscopic conductivity can be significantly increased by reducing the grain boundary resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.