Abstract
Theoretical relationship between collective and tracer diffusion coefficients has been derived and tested for different types of binary melts: (i) with an ordering tendency (case study on Ni–Al and Ni–Zr melts) and (ii) with a demixing tendency (case study on Cu–Ag melts). The obtained relationship explicitly demonstrates microscopic cross-correlation effects in the kinetics of collective diffusion. Our approach incorporates molecular dynamics calculations, modelling and statistical mechanical analysis based on fundamental concepts of the fluctuation-dissipation theorem, generalized Langevin equation and Mori-Zwanzig formalism. We also applied the developed theory to interpret recent available experimental data as well as our molecular dynamics data of diffusion kinetics in different types of binary melts: with chemical ordering and contrarily with demixing tendency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.