Abstract

The adaptive finite element method (AFEM) is an effective way to retain enough resolution in selected regions while improving computational efficiency for reconstruction in fluorescent molecular tomography (FMT). In addition, background optical properties acquired by diffuse optical tomography (DOT) will improve the quality of reconstructed images. In this work, a DOT-guided adaptive reconstruction method (DGARM) is proposed, in which DOT is introduced into an adaptive reconstruction framework of FMT. Besides being used as functional a priori information in the forward modeling, the reconstructed local absorption coefficients in DOT are also used to form internal structural a priori information, which is further used to identify regions of interest (ROIs) in the mesh refinement of the adaptive procedure. Because optical properties are recovered before the formulation of FMT, a linear relationship is established between the fluorescent field and boundary measurements. We implemented numerical simulations and physical experiments to evaluate the performance of the algorithm. Compared with the strategies of uniform meshing with DOT and AFEM without DOT, DGAM improves localization accuracy of the reconstruction of fluorescence inclusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.