Abstract
In this paper we present the results of a diffuse-interface model for thermocapillary or Marangoni flow in a Hele-Shaw cell. We use a Galerkin-type spectral element discretization, based on Gauss–Lobatto quadrature, for numerical implementation of the governing equations resulting from the diffuse-interface model. The results are compared to classical results for a linear and circular fixed interface. It is found that the diffuse-interface solution converges to the classical solution in the sharp-interface limit. The results are sufficiently accurate if the interfacial thickness is only small compared to the size of the thermocapillary boundary layer, even if the interfacial thickness used is much larger than the real interfacial thickness. We also consider freely movable interfaces with a temperature gradient perpendicular to the interface. It will be shown that this situation can lead to a destabilizing Marangoni convection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.