Abstract

A hexagonal array grating based on selective etching of a 2D ferroelectric domain inversion in a periodically poled MgO-doped LiNbO3 crystal is fabricated. The effects to the diffractive self-imaging as a function of diffraction distance for a fixed phase difference and array duty cycle of the grating is theoretically analyzed. The Talbot diffractive self-imaging properties after selective etching of a 2D ferroelectric domain inversion grating under a fixed phase difference are experimentally demonstrated. A good agreement between theoretical and experimental results is observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.