Abstract
This work reviews the use of diffractive optics for beam-shaping of high-power lasers (50–100 W) for welding and microwelding of plastics. While the use of lasers to weld plastics is well known, the use of diffractive optics to reshape lasers for welding of plastics has not been previously reported. By using inverse Fourier transformations diffractive lenses were designed and fabricated. An 80 W fiber laser with a wavelength of 1084 nm was coupled in air to the diffractive optical element (DOE) to shape the beam into predetermined patterns. These patterns were then reduced with standard optics to a desired size. Weld quality was assessed in terms of fidelity and replication of the original bitmap image that was used to design the DOE. Good results were obtained for both image fidelity and replication. In many cases the weld image retained the individual bitmap elements of the original artwork used to encode the DOE. It was also found that the overall efficiencies of the system were as high as 59% and weld times were less than 1 s. Weld joints were also determined to be relatively strong and weld circles as small as a few hundreds of µm in diameter could be formed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.