Abstract
An analytical model of vector formalism is proposed to investigate the diffraction of high numerical aperture subwavelength circular binary phase Fresnel zone plate (FZP). In the proposed model, the scattering on the FZP's surface, reflection and refraction within groove zones are considered and diffraction fields are calculated using the vector Rayleigh-Sommerfeld integral. The numerical results obtained by the proposed phase thick FZP (TFZP) model show a good agreement with those obtained by the finite-difference time-domain (FDTD) method within the effective extent of etch depth. The optimal etch depths predicted by both methods are approximately equal. The analytical TFZP model is very useful for designing a phase and hybrid amplitude-phase FZP with high-NA and short focal length.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.