Abstract

The two-dimensional problem of an E-polarized plane wave incident on a perfectly conducting cylinder of almost circular cross-section is treated , the maximum deviation of the perimeter of the cross-section from a strict circle being regarded mathematically as an infinitesimal quantity whose second and higher powers are neglected. In the body of the paper the method of solution uses infinite Fourier transform techniques, but an analysis involving a Watson transformation, more traditional in this type of problem , is given in appendix A. Attention is for the most part directed to the case in which the mean radius of the cylinder is large compared to the wavelength, and the form of the solution then appropriate is examined in some detail. In particular, initial terms of asymptotic expansions in inverse powers of the mean radius to wavelength ratio are obtained for the ‘specular’ and for the ‘creeping’ contributions to the far field. It is shown that the former contributionis in agreement with that derived by the Luneberg—Kline method, and the latter with the prescription proposed by Keller. Various Bessel function results are required, some of which are derived in appendices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.