Abstract
The problem of diffraction of a plane scalar wave by a narrow cone is considered. The shape of the cone is arbitrary. The boundary condition is the Dirichlet or Neumann one. The wave scattered by the cone vertex arises as a result of the diffraction process. The subject of this paper is to calculate the wave amplitude. If the cone is narrow, it is possible to obtain simpler approximate formulas in comparison with Smyshlayev's one. The exactness of the approximate formulas is checked numerically. The etalon is a solution in explicit form in the axially symmetric case. The calculation shows that our formula is more exact in the case of the Dirichlet boundary condition than Felsen's formula. The approximate formula is a generalization of Felsen's one for circular cone to an arbitrary narrow cone in the case of the Neumann boundary condition. Bibliography: 6 titles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.