Abstract

Hard rock seismic exploration normally has to deal with rather complex geological environments. These types of environments are usually characterized by a large number of local heterogeneities. The seismic data from such environments often have a poor signal to noise ratio because of the complexity of hard rock geology. In such situations, the processing algorithms that are capable of handling data with a low signal/noise ratio and are able to image geological discontinuities and subvertical structures are essential. Herein we present a modification of the 3D Kirchhoff post-stack migration algorithm and diffraction imaging. The modification utilizes coherency attributes obtained by the diffraction imaging algorithm in 3D to weight or steer the main Kirchhoff summation. We applied diffraction techniques to a number of 3D seismic datasets from different hard rock mine sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.