Abstract

In this paper, we consider plane wave diffraction by a tandem slit loaded with a homogenous material. The boundary value problem is formulated into a pair of simultaneous Wiener-Hopf equations via Fourier transformation. After decoupling these equations by elementary transformation, each modified Wiener-Hopf equation is reduced to a Fredholm integral equation of the second kind. The integral equations are then solved approximately to yield the Fourier transform of the diffracted fields. The inverse transform is evaluated asymptotically to obtain the far field expressions. Measurements and numerical simulations are also performed for several different geometry and material configurations. The analytic solutions compare well with measured and simulated results. The possibility of reducing beamwidth and increasing power coupled through the loaded tandem slit is explored.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.