Abstract

The Dirac equation in $$\mathbb {R}^{1,3}$$ with potential $${\textsf{Z}}/r$$ is a relativistic field equation modeling the hydrogen atom. We analyze the singularity structure of the propagator for this equation, showing that the singularities of the Schwartz kernel of the propagator are along an expanding spherical wave away from rays that miss the potential singularity at the origin, but also may include an additional spherical wave of diffracted singularities emanating from the origin. This diffracted wavefront is $$1-{\epsilon }$$ derivatives smoother than the main singularities, for all $${\epsilon }>0,$$ and is a conormal singularity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.