Abstract

More than one decade has passed since the first global cloud-resolving simulation was achieved under an aquaplanet condition in 2005. While such high-resolution global simulations have been beneficial not only to advance our knowledge of organized cloud systems but also to give various hints on improvements of traditional global models that depend on a kind of cumulus parameterization, explicit computations of cloud microphysics cannot necessarily ensure realistic representations of clouds and climate. A direct coupling between fluid dynamics and cloud processes is a strong point of the global cloud-resolving approach, but there still remain various rooms of uncertainties. Here, we briefly summarize successful and unsuccessful results of global or near-global simulations with explicit cloud microphysics and discuss a difficulty in the subgrid-scale redistribution of moisture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.