Abstract
To remedy the joint-torque instability/divergence phenomenon arising in the conventional infinity-norm torque-minimization (INTM) scheme, and prevent the occurrence of high joint-velocity and joint-acceleration as well, a different-level bi-criteria minimization scheme is proposed and investigated in this paper for redundant robot manipulators with physical constraints (e.g., joint-angle limits, joint-velocity limits and joint-acceleration limits) considered. Such a scheme combines the minimum two-norm joint-velocity and infinity-norm joint-torque solutions via a weighting factor, which guarantees the final joint-velocity of the motion to be near zero (more acceptable for engineering application). In addition, the different-level scheme is reformulated as a general quadratic program (QP) and resolved at the joint-acceleration level. Computer-simulation results based on the PUMA560 robot manipulator further demonstrate the effectiveness and advantages of the proposed different-level bi-criteria minimization scheme for robotic redundancy resolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.