Abstract

.Significance: Differentiation of primary central nervous system lymphoma from glioblastoma is clinically crucial to minimize the risk of treatments, but current imaging modalities often misclassify glioblastoma and lymphoma. Therefore, there is a need for methods to achieve high differentiation power intraoperatively.Aim: The aim is to develop and corroborate a method of classifying normal brain tissue, glioblastoma, and lymphoma using optical coherence tomography with deep learning algorithm in an ex vivo experimental design.Approach: We collected tumor specimens from ordinal surgical operations and measured them with optical coherence tomography. An attention ResNet deep learning model was utilized to differentiate glioblastoma and lymphoma from normal brain tissues.Results: Our model demonstrated a robust classification power of detecting tumoral tissues from normal tissues and moderate discrimination between lymphoma and glioblastoma. Moreover, our results showed good consistency with the previous histological findings in the pathological manifestation of lymphoma, and this could be important from the aspect of future clinical practice.Conclusion: We proposed and demonstrated a quantitative approach to distinguish different brain tumor types. Using our method, both neoplasms can be identified and classified with high accuracy. Hopefully, the proposed method can finally assist surgeons with decision-making intraoperatively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.