Abstract

Efficient parameterization of point-sampled surfaces is a fundamental problem in the field of digital geometry processing. In order to parameterize a given point-sampled surface for minimal distance distortion, a differentials-based segmentation and parameterization approach is proposed in this paper. Our approach partitions the point-sampled geometry based on two criteria: variation of Euclidean distance between sample points, and angular difference between surface differential directions. According to the analysis of normal curvatures for some specified directions, a new projection approach is adopted to estimate the local surface differentials. Then a k-means clustering (k-MC) algorithm is used for partitioning the model into a set of charts based on the estimated local surface attributes. Finally, each chart is parameterized with a statistical method -- multidimensional scaling (MDS) approach, and the parameterization results of all charts form an atlas for compact storage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.