Abstract
The pathogenesis of coronary artery calcification (CAC) in coronary heart disease (CHD) is mediated by exosomes derived from vascular smooth muscle cells (VSMCs). However, little is known about their underlying mechanism. In this study, we aimed to investigate the differentially expressed miRNAs in VSMCs undergoing induced calcification. A cellular calcification model was established using the mouse VSMC line MOVAS-1. Calcium deposition was evaluated by Alizarin Red staining. Exosome sizes were determined by Nanoparticle Tracking Analysis (NTA), and exosome morphology was examined by transmission electron microscopy (TEM). The expression of exosome and calcification biomarkers was analyzed by quantitative real-time PCR (qPCR) and western blotting. Differential miRNA profiles were determined by deep sequencing and bioinformatics. Protein levels in VSMCs experiencing interference by a miR-324-3p inhibitor were detected by western blotting. The MOVAS-1 calcification model was confirmed by Alizarin Red staining and expressional alteration of α-SMA, BMP-2, OPN, and MGP. Exosomes from the calcification model showed expression of exosomal biomarkers and regular exosome diameters, which caused significant calcification in MOVAS-1 cells. In total, 987 and 92 miRNAs were significantly upregulated and downregulated in exosomes from the cellular calcification model as compared with those from MOVAS-1 cells, respectively. Target genes of differential miRNAs were involved in various biological processes such as development, metabolism, and cellular component organization and biogenesis as well as multiple signaling pathways such as protein kinase B (AKT) signaling. The most differentially expressed miRNAs were validated by qPCR, which showed that mmu-let-7e-5p was downregulated and mmu-miR-324-3p was upregulated in exosomes from the MOVAS-1 cellular calcification model. The expression of IGF1R was increased, and the expressions of PIK3CA and MAP2K1 were reduced in MOVAS-1 transfected with a miR-324-3p inhibitor. microRNA profiles were significantly altered in exosomes from VSMCs undergoing calcification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Biochemistry & Cell Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.