Abstract

The protein kinase C (PKC) family represents an important group of enzymes whose activation is associated with their translocation from the cytosol to different cellular membranes. In this study, the spatial distribution of PKC-alpha, -delta and -epsilon in rat liver epithelial (WB) cells has been examined by Western blot analysis after subcellular fractionation. Cytosolic, membrane, nuclear, and cytoskeletal fractions were obtained from cells stimulated with phorbol 12-myristate 13-acetate (PMA), angiotensin II (ANG II), or epidermal growth factor (EGF). PMA caused most of the PKC-alpha, -delta and -epsilon initially present in the cytosol to be transported to the membrane and nuclear fractions. In contrast, both ANG II and EGF induced only a minor translocation of PKC-alpha to the membrane fraction but caused a statistically significant membrane-directed movement of PKC-delta and -epsilon. Translocation of PKC-delta and -epsilon to the nucleus induced by ANG II and EGF was transient and quantitatively smaller than that induced by PMA. PKC-delta and -epsilon were present in the cytoskeleton of resting cells, but although PMA, ANG II, and EGF caused some changes in their content, these were variable, suggesting that the cytoskeleton fraction was heterogeneous. PKC depletion inhibited ANG II-induced mitogenesis and the sustained activation of Raf-1 and extracellular regulated protein kinase (ERK). However, although PKC depletion inhibited EGF-induced mitogenesis, the maximum EGF-induced activation of the ERK pathway was only slightly retarded. We hypothesize that PKC-delta and -epsilon are involved in mitogenesis via both ERK-dependent and ERK-independent mechanisms. These results support the notion that specific PKC isozymes exert spatially defined effects by virtue of their directed translocation to distinct intracellular sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.