Abstract

Thermograms obtained by differential scanning calorimetry of a range of bacteria of different heat resistances were compared. Equations were derived to calculate the rate at which the numbers of viable organisms in a calorimeter decline as the temperature is raised at a constant rate. Vegetative bacteria scanned at 10 degrees C min-1 showed multi-peaked thermograms with four major peaks (denoted m, n, p and q) occurring in the regions 68-73, 77-84, 89-99 and 105-110 degrees C respectively. Exceptions were that peak m (the largest peak) occurred at 79-82 degrees C in Bacillus stearothermophilus and an additional peak, r, was detected in Escherichia coli at 119 degrees C. At temperatures below the main peak m there were major differences in thermograms between species. There was a direct relationship between the onset of thermal denaturation and the thermoresistance of different organisms. Heat-sensitive organisms displayed thermogram features which were absent in the more heat-resistant types. When samples were cooled to 5 degrees C and re-heated, a small endothermic peak, pr, was observed at the same temperature as p. Peaks p and pr were identified as the melting endotherms of DNA. In all vegetative organisms examined, maximum death rates, computed from published D and z values, occurred at temperatures above the onset of thermal denaturation, i.e. cell death and irreversible denaturation of cell components occurred within the same temperature range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.