Abstract

The replacement of traditional conductive carbon additives with single wall carbon nanotubes (SWCNTs) in lithium metal oxide cathode composites has been shown to enhance thermal stability as well as power capability and electrode energy density. The dispersion of 1 wt% high purity laser-produced SWCNTs in a LiNi 0.8Co 0.2O 2 electrode created an improved percolation network over an equivalent composite electrode using 4 wt% Super C65 carbon black; evidenced by additive connectivity in SEM images and an order of magnitude increase in electrode electrical conductivity. The cathode with 1 wt% SWCNT additives showed comparable active material capacity (185–188 mAh g −1), at a low rate, and Coulombic efficiency to the cathode composite with 4 wt% Super C65. At increased cycling rates, the cathode with SWCNT additives had higher capacity retention with more than three times the capacity at 10 C (16.4 mA cm −2). The thermal stability of the electrodes was evaluated by differential scanning calorimetry after charging to 4.3 V and float charging for 12 h. A 40% reduction of the cathode exothermic energy released was measured when using 1 wt% SWCNTs as the additive. Thus, the results demonstrate that replacing traditional conductive carbon additives with a lower weight loading of SWCNTs is a simple way to improve the thermal transport, safety, power, and energy characteristics of cathode composites for lithium ion batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.