Abstract

PIWI-LIKE 2, a member of the ARGONAUTE protein family, is exclusively expressed in pre-pachytene and pachytene stages of spermatogenesis. PIWI-LIKE 2 acts in the germ cell development and the silencing of retrotransponsons to maintain the genomic integrity and stem cell character. In the present study we investigated DNA methylation as potential mechanism for the regulation of human PIWI-LIKE 2 expression in cell lines related to spermatozoa precursor cells. We detected a high methylation of the PIWI-LIKE 2 promoter in TCam-2 cells, while in NT2/D1 cells the promoter was hypomethylated. Concordantly, PIWI-LIKE 2 expression is higher in NT2/D1 cells than in TCam-2 cells. By demethylation of the promoter with 5′-Aza-2′-deoxycytidine, PIWI-LIKE 2 expression in TCam-2 was increased, while in NT2/D1 no alterations in PIWI-LIKE 2 expression could be detected. In conclusion, we analyzed the DNA methylation driving PIWI-LIKE 2 expression in undifferentiated germ cell tumors and demonstrated an epigenetic basis for PIWI-LIKE 2 expression in this cell type.

Highlights

  • Spermatogenesis is a highly coordinated process that involves mitotic and meiotic divisions, as well as cellular differentiation to produce mature spermatozoa from undifferentiated germline stem cells

  • We analyzed the region upstream of PIWI-LIKE 2 transcription start site (TSS) to identify a putative promoter as well as target sites for CpG methylations that might contribute to gene expression regulation

  • All of these CpG sites were located within the −300 to +300 bp region relative to the TSS of PIWI-LIKE 2 (Figure 1A)

Read more

Summary

Introduction

Spermatogenesis is a highly coordinated process that involves mitotic and meiotic divisions, as well as cellular differentiation to produce mature spermatozoa from undifferentiated germline stem cells. Sperm development is associated with the establishment of extensive chromatin and epigenetic changes. This process allows genomic chemical modifications that affect gene expression without altering the underlying nucleotide sequence (Cui et al, 2016). Genomic methylation profiling analysis reveals cell type specific methylation patterns, which result in cell-type specific differential gene expressions and differentially regulated tissue-specific processes. Methylation marks for proper male gametogenesis are established during genomic reprogramming in early embryonic development and indicate an exclusive genetic profile of male germ cells compared to somatic tissues (Santos et al, 2002; Bourc’his and Bestor, 2004)

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.