Abstract

This review discusses the regulation of growth plate chondrocytes by vitamin D(3). Over the past ten years, our understanding of how two vitamin D metabolites, 1alpha,25-(OH)(2)D(3) and 24R,25-(OH)(2)D(3), exert their effects on endochondral ossification has undergone considerable advances through the use of cell biology and signal transduction methodologies. These studies have shown that each metabolite affects a primary target cell within the endochondral developmental lineage. 1alpha,25-(OH)(2)D(3) affects primarily growth zone cells, and 24R,25-(OH)(2)D(3) affects primarily resting zone cells. In addition, 24R,25-(OH)(2)D(3) initiates a differentiation cascade that results in down-regulation of responsiveness to 24R,25-(OH)(2)D(3) and up-regulation of responsiveness to 1alpha,25-(OH)(2)D(3). 1alpha,25-(OH)(2)D(3) regulates growth zone chondrocytes both through the nuclear vitamin D receptor, and through a membrane-associated receptor that mediates its effects via a protein kinase C (PKC) signal transduction pathway. PKCalpha is increased via a phosphatidylinositol-specific phospholipase C (PLC)-dependent mechanism, as well as through the stimulation of phospholipase A(2) (PLA(2)) activity. Arachidonic acid and its downstream metabolite prostaglandin E(2) (PGE(2)) also modulate cell response to 1alpha,25-(OH)(2)D(3). In contrast, 24R,25-(OH)(2)D(3) exerts its effects on resting zone cells through a separate, membrane-associated receptor that also involves PKC pathways. PKCalpha is increased via a phospholipase D (PLD)-mediated mechanism, as well as through inhibition of the PLA(2) pathway. The target-cell-specific effects of each metabolite are also seen in the regulation of matrix vesicles by vitamin D(3). However, the PKC isoform involved is PKCzeta, and its activity is inhibited, providing a mechanism for differential autocrine regulation of the cell and events in the matrix by these two vitamin D(3) metabolites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.