Abstract

The pro-apoptotic members of the Bcl-2 family include initiator proteins that contain only BH3 domains and downstream effector multi-BH domain-containing proteins, including Bax and Bak. In this report, we compared the ability of the six human anti-apoptotic Bcl-2 family members to suppress apoptosis induced by overexpression of Bax or Bak, correlating findings with protein interactions measured by three different methods: co-immunoprecipitation, glutathione S-transferase pulldown, and fluorescence polarization assays employing synthetic BH3 peptides from Bax and Bak. Bcl-B and Mcl-1 showed strong preferences for binding to and suppression of Bax and Bak, respectively. In contrast, the other anti-apoptotic Bcl-2 family proteins (Bcl-2, Bcl-X(L), Bcl-W, and Bfl-1) suppressed apoptosis induced by overexpression of either Bax or Bak, and they displayed an ability to bind both Bax and Bak by at least one of the three protein interaction methods. Interestingly, however, full-length Bax and Bak proteins and synthetic Bax and Bak BH3 peptides exhibited discernible differences in their interactions with some anti-apoptotic members of the Bcl-2 family, cautioning against reliance on a single method for detecting protein interactions of functional significance. Altogether, the findings reveal striking distinctions in the behaviors of Bcl-B and Mcl-1 relative to the other anti-apoptotic Bcl-2 family members, where Bcl-B and Mcl-1 display reciprocal abilities to bind and neutralize Bax and Bak.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.