Abstract

Objective To investigate whether the intracortical inhibitory (ICI) and facilitatory (ICF) circuits in the primary motor cortex between the first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles are modulated differently. Methods We conducted paired-pulse transcranial magnetic stimulation in combination with different current directions (anterior-medially: AM, and posterior-laterally: PL) under relaxed and active muscle conditions with interstimulus intervals (ISIs) between 2 and 16 ms. Results In both muscle conditions, the conditioned motor-evoked potential (MEP) responses obtained with the AM current direction (preferentially eliciting early I-waves) were similar between the two muscles at all ISIs, but the MEP responses obtained with the PL current direction (preferentially eliciting late I-waves) were different between FDI and ADM muscles, in that the conditioned MEP responses in FDI muscle were inhibited at all ISIs under both muscle conditions, whereas those in ADM muscle were suppressed at only short ISIs (2–4 ms). Conclusions These results indicate that the inhibitory connections operating for the corticospinal tract neurons in FDI muscle are more potent, and, conversely, that those in ADM muscle are weaker. Significance The different modulations of ICI circuits between FDI and ADM muscles is an important neural mechanism which may contribute to different functional demands (finger dexterity).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.