Abstract

BackgroundThough anatoxin-a (antx-a) is a globally important cyanobacterial neurotoxin in inland waters, information on sublethal toxicological responses of aquatic organisms is limited. We examined influences of (±) antx-a (11–3490 µg/L) on photolocomotor behavioral responses and gene transcription associated with neurotoxicity, oxidative stress and hepatotoxicity, in two of the most common alternative vertebrate and fish models, Danio rerio (zebrafish) and Pimephales promelas (fathead minnow). We selected environmentally relevant treatment levels from probabilistic exposure distributions, employed standardized experimental designs, and analytically verified treatment levels using isotope-dilution liquid chromatography tandem mass spectrometry. Caffeine was examined as a positive control.ResultsCaffeine influences on fish behavior responses were similar to previous studies. Following exposure to (±) antx-a, no significant photolocomotor effects were observed during light and dark transitions for either species. Though zebrafish behavioral responses profiles were not significantly affected by (±) antx-a at the environmentally relevant treatment levels examined, fathead minnow stimulatory behavior was significantly reduced in the 145–1960 µg/L treatment levels. In addition, no significant changes in transcription of target genes were observed in zebrafish; however, elavl3 and sod1 were upregulated and gst and cyp3a126 were significantly downregulated in fathead minnows.ConclusionWe observed differential influences of (±) antx-a on swimming behavior and gene transcription in two of the most common larval fish models employed for prospective and retrospective assessment of environmental contaminants and water quality conditions. Sublethal responses of fathead minnows were consistently more sensitive than zebrafish to this neurotoxin at the environmentally relevant concentrations examined. Future studies are needed to understand such interspecies differences, the enantioselective toxicity of this compound, molecular initiation events within adverse outcome pathways, and subsequent individual and population risks for this emerging water quality threat.

Highlights

  • Though anatoxin-a is a globally important cyanobacterial neurotoxin in inland waters, information on sublethal toxicological responses of aquatic organisms is limited

  • Toxins produced during cyanobacterial blooms vary widely with numerous compounds classified by mechanism of action and structure [2], along with other substances for which environmental fate and toxicological profiles are largely unknown

  • We explored whether and the extent to which behavioral and gene transcriptional endpoints are affected by (±) antx-a in these common fish models, following exposure to experimental treatment levels selected from centiles of a probabilistic exposure distribution of antx-a in surface waters [14]

Read more

Summary

Introduction

Though anatoxin-a (antx-a) is a globally important cyanobacterial neurotoxin in inland waters, information on sublethal toxicological responses of aquatic organisms is limited. Though cyanobacteria are important primary producers in freshwater and marine ecosystems, large-scale blooms of harmful species present risks to human health and ecosystems when elevated levels of toxins are. Toxins produced during cyanobacterial blooms vary widely with numerous compounds classified by mechanism of action and structure [2], along with other substances for which environmental fate and toxicological profiles are largely unknown. Cyanotoxins levels in aquatic systems are elevated by higher cell density when blooms occur, but toxins biosynthesis is influenced by genetic factors and environmental conditions such as temperature [4, 5], light [6, 7], and nutrient levels and stoichiometry [8,9,10]. Understanding aquatic conditions that lead to production and release of toxins and subsequent consequences is key to protecting ecosystems and public health, especially since bloom magnitude, frequency and duration appear to be increasing with climate change [11,12,13]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.