Abstract

Under aerobic, high glucose conditions, Saccharomyces cerevisiae exhibits glucose repression and thus a predominantly fermentative metabolism. Here, we show that two commonly used prototrophic representatives of the CEN.PK and S288C strain families respond differently to deletion of the hexokinase 2 (HXK2) - a key player in glucose repression: In CEN.PK, growth rate collapses and derepression occurs on the physiological level, while the S288C descendant FY4 Deltahxk2 still grows like the parent strain and shows a fully repressed metabolism. A CEN.PK Deltahxk2 strain with a repaired adenylate cyclase gene CYR1 maintains repression but not growth rate. A comparison of the parent strain's physiology, metabolome, and proteome revealed higher metabolic rates, identical biomass, and byproduct yields, suggesting a lower Snf1 activity and a higher protein kinase A (PKA) activity in CEN.PK. This study highlights the importance of the genetic background in the processes of glucose signaling and regulation, contributes novel evidence on the overlap between the classical glucose repression pathway and the cAMP/PKA signaling pathway, and might have the potential to resolve some of the conflicting findings existing in the field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.