Abstract

Insects face diverse biotic and abiotic stresses that can affect their survival. Many of these stressors impact cellular metabolism, often resulting in increased accumulation of reactive oxygen species (ROS). Consequently, insects will respond to these stressors by increasing antioxidant activity and increased production of heat shock proteins (HSPs). In this study, the effect of heat, cold, starvation, and parasitism by Habroacon hebetor wasps was examined in the carob moth, Ectomyelois ceratoniae, to determine which responses were common to different stresses. For all stressors, malondialdehyde levels increased, indicative of oxidative stress in the insects. The activity of two antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), increased with each stress, suggesting that these enzymes were serving a protective role for the insects. Heat (46°C for 100 min) and cold (-15°C for 30 min) treatments caused significant mortalities to all developmental stages, but pretreatments of moderate heat (37°C for 10 min) or cold (10°C for 10 min) induced thermotolerance and reduced the mortality rates when insects were subsequently exposed to lethal temperatures. Quantitative RT-PCR confirmed that heat and cold tolerance were associated with up-regulation of two HSPs, HSP70 and HSP90. Interestingly, HSP70 transcripts increased to a greater extent with cold treatment, while HSP90 transcripts increased more in response to high temperatures. RNA interference (RNAi)-mediated knockdown of either HSP70 or HSP90 transcripts was achieved by injecting larvae with dsRNA targeting each gene’s transcripts, and resulted in a loss of acquired thermotolerance in insects subjected to the heat or cold pretreatments. These observations provide convincing evidence that both HSP70 and HSP90 are important mediators of the acquired thermotolerance. Starvation and parasitism by wasps caused differential expression of the HSP genes. In response to starvation, HSP90 transcripts increased to a greater extent than HSP70, while in contrast, HSP70 transcripts increased to a greater extent than those of HSP90 during the first 48 h of wasp parasitism. These results showed the differential induction of the two HSPs’ transcripts with variable stresses. As well as, heat, cold, starvation, and parasitism induce oxidative stress, and antioxidant enzymes likely play an important role in reducing oxidative damage in E. ceratoniae.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.