Abstract

The adaptation of renal medullary cells to their hyperosmotic environment involves the accumulation of compatible organic osmolytes and the enhanced synthesis of heat shock proteins (HSP) 27 and 70. While the mechanisms leading to osmolyte accumulation are similar in papillary collecting duct (PCD) and papillary interstitial (PI) cells, the present data demonstrate that HSP27 and HSP70 are expressed differentially in these cells both in vivo and in vitro. HSP70 is abundant in PCD, but not expressed in PI cells in the papilla in situ, while HSP27 is expressed in both PCD and PI cells. These observations could be reproduced by non-permeant solutes in cultured cells. Osmotic stress strongly induced HSP70 in MDCK cells (as a model for PCD cells), but not in PI cells, while HSP27 was constitutively expressed in MDCK cells and was up-regulated in PI cells. Since prior hypertonic stress (NaCl addition) protects MDCK against subsequent exposure to high urea concentrations, this effect was also assessed in PI cells. In both cell lines, hypertonic pretreatment prior to urea exposure (400 mm) strongly attenuated caspase-3 activation. Inhibition of HSP27 expression by antisense transfection diminished the protective effect of hypertonic preconditioning in PI cells, while attenuation of HSP70 expression in MDCK cells diminished the protective effect of hypertonic preconditioning in these cells. These observations indicate that PCD and PI cells employ cell-specific mechanisms for protection against high urea concentrations as present in the renal papilla during antidiuresis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.