Abstract
Carp respond to cold by the upregulated expression of Delta9-acyl-CoA desaturase. Here we report the cloning and characterization of Cds2, a second Delta9-acyl CoA-desaturase expressed in carp liver. Both Cds1 and Cds2 complemented the ole1 mutation in Saccharomyces cerevisiae, permitting the synthesis of delta9-monounsaturates, confirming their identity as delta9-desaturases. We demonstrate that under a standard feeding regime it is the Cds2, and not Cds1, transcript that is transiently upregulated during the first few days of cooling from 30 degrees C to 10 degrees C, the period when cold-induced membrane restructuring occurs. Cds2 exists as two differentially spliced transcripts, differing by a small segment from the 3'-untranslated region, the ratio of which varies with temperature. Feeding a diet enriched in saturated fats produced a fourfold increase in Cds1 transcript levels, which was blocked by cooling to 15 degrees C. Cds2 transcript levels, however, showed no substantial response to the saturated diet. Thus carp liver uniquely expresses two isoforms of delta9-acyl CoA desaturase, possibly formed by a recent duplication event, that are differentially regulated by cooling and dietary treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American journal of physiology. Regulatory, integrative and comparative physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.