Abstract

Cytokines secreted within the central nervous system (CNS) are important in the development of multiple sclerosis (MS) lesions. The balance between Th1, monocyte/macrophage (M/M) and Th2 cytokines in the CNS may be pivotal in determining the outcome of lesion development. We examined the effects of mixtures of cytokines on gene expression by CNS glial cells, as mixtures of cytokines are present in MS lesions, which in turn contain mixtures of glial cells. In this initial analysis by gene array, we examined changes at 6 hours to identify early changes in gene expression that represent primary responses to the cytokines. Rat glial cells were incubated with mixtures of Th1, M/M and Th2 cytokines for 6 hours and examined for changes in early gene expression employing microarray gene chip technology. A minimum of 814 genes were differentially regulated by one or more of the cytokine mixtures in comparison to controls, including changes in expression in a large number of genes for immune system-related proteins. Expression of the proteins for these genes likely influences development and inhibition of MS lesions as well as protective and regenerative processes. Analysing gene expression for the effects of various combinations of exogenous cytokines on glial cells in the absence of the confounding effects of inflammatory cells themselves should increase our understanding of cytokine-induced pathways in the CNS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.