Abstract

Transforming growth factor-beta1 (TGF-beta1) is commonly used to promote matrix production for engineered tissues in vitro, yet it also enhances fibroblast contractility. For applications where contraction is undesirable, we hypothesized that epidermal growth factor (EGF) would yield equivalent mechanical properties without enhancing contractility. In this study, the response of human dermal fibroblasts to EGF (5 ng/mL) and TGF-beta1 (5 ng/mL) was determined within hemispheric fibrin-based gels by assessing matrix compaction and strength, cell number, collagen production, and contractility. After 3 weeks, both cytokines enhanced compaction relative to controls, and EGF roughly doubled matrix strength over controls and TGF-beta1-treated samples. TGF-beta1 induced alpha-smooth muscle actin (alphaSMA) expression whereas EGF did not. TGF-beta1 also increased retraction following substrate release while EGF reduced retraction. Treatment with cytochalasin D revealed that, regardless of growth factor, approximately 10% of the total retraction was due to residual matrix stress accumulated during cell-mediated remodeling. EGF increased the cell number by 17%, whereas TGF-beta1 decreased the cell number by 63% relative to controls. EGF and TGF-beta1 stimulated greater collagen content than controls by 49% and 33%, respectively. These data suggest that EGF may be an attractive alternative to TGF-beta1 for engineering fibrin-based connective tissue substitutes with adequate strength and minimal tissue contractility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.