Abstract

Contact between blood and artificial surfaces induces an inflammatory response including activation of leukocytes and platelets, as well as complement and other plasma cascade systems. In the present study we investigated the roles of complement and surface modification in polyvinyl chloride-induced synthesis of eicosanoids (arachidonic acid metabolites). Human whole blood was incubated in rotating loops of polyvinyl chloride or heparin-coated polyvinyl chloride tubing for 4 hours. Plasma concentrations of the eicosanoids leukotriene B4, prostaglandin E2 and thromboxane B2 were quantified. Polyvinyl chloride induced a substantial increase in leukotriene B4, prostaglandin E2, and thromboxane B2. Inhibition of complement activation by the complement factor 3 binding peptide compstatin or blockade of the complement factor 5a receptor with a specific antagonist significantly and specifically inhibited the synthesis of leukotriene B4, whereas thromboxane B2 and prostaglandin E2 synthesis were apparently complement independent. The increase in all three mediators was significantly reduced by the heparin coating. Indomethacin abolished the increase of the cyclooxygenase products prostaglandin E2 and thromboxane B2, but had no effect on the increase of the lipoxygenase product leukotriene B4, consistent with the specificity of indomethacin for the cyclooxygenase and confirming the specificity of complement inhibition. Polyvinyl chloride-induced increase in all three eicosanoids was attenuated by heparin coating, whereas complement inhibition selectively reduced the synthesis of leukotriene B4.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.