Abstract

Differential distributed space-time coding (D-DSTC) is a cooperative transmission technique that can improve diversity in wireless relay networks in the absence of channel information. Conventionally, it is assumed that channels are flat-fading and relays are perfectly synchronized at the symbol level. However, due to the delay spread in broadband systems and the distributed nature of relay networks, these assumptions may be violated. Hence, inter-symbol interference (ISI) may appear. This paper proposes a new differential encoding and decoding process for D-DSTC systems with multiple relays over slow frequency-selective fading channels with imperfect synchronization. The proposed method overcomes the ISI caused by frequency-selectivity and is robust against synchronization errors while not requiring any channel information at the relays and destination. Moreover, the maximum possible diversity with a decoding complexity similar to that of the conventional D-DSTC is attained. Simulation results are provided to show the performance of the proposed method in various scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.