Abstract

BackgroundAlzheimer’s disease (AD) is one of the leading causes of death in the US and there is no validated drugs to stop, slow or prevent AD. Despite tremendous effort on biomarker discovery, existing findings are mostly individual biomarkers and provide limited insights into the transcriptomic decoupling underlying AD. We propose to explore the gene co-expression patterns in multiple AD stages, including cognitively normal (CN), early mild cognitive impairment (EMCI), late MCI and AD.MethodsWe modified traiditonal joint graphical lasso to model our asusmption that the co-expression networks in consecutive disease stages are largely similar with critical differences. In addition, we performed subsequent network comparison analysis for identification of stage specific transcriptomic decoupling. We focused our analysis on top AD-enriched pathways.ResultsWe observed that 419 edges in CN, 420 edges in EMCI, 381 edges in LMCI and 250 edges in AD were frequently estimated with non zero weights. With modified JGL, the weight of all estimated edges in CN, EMCI and LMCI are zero. In AD group, 299 edges were occasionally estimated to be nonzero and the average correlation between genes was 0.0023. For co-expression change during AD progression, there are 66 pairs of genes that demonstrated a continuously decreasing or increasing co-expression from CN to EMCI, LMCI and AD.The network level clustering coefficient remains stable from CN to LMCI and then decreases significantly when progressing to AD. When evaluating edge level differences, we identified eight gene modules with continuously decreasing or increasing co-expression patterns during AD progression. Five of them shows significant changes from CN to EMCI and thus have the potential to serve system biomarkers for early screening of AD.ConclusionWe employed a modified joint graphical lasso for estimation of co-expression networks for multiple stages of AD. Comparing with graphical lasso, our modified joint graphical lasso model accounts for the similarity in consecutive disease stages. Our results on real data set revealed five gene clusters with obvious co-expression pattern change from CN to EMCI, which could be used as potential system-level biomarkers for early screening of AD.

Highlights

  • Alzheimer’s disease (AD) is one of the leading causes of death in the US and there is no validated drugs to stop, slow or prevent AD

  • Comparison of jGL and graphical lasso We examined the difference of our modified Joint graphic Least absolute shrinkage and selection operator (Lasso) (JGL) and graphical lasso in terms of their performance in estimation of co-expression networks based on permuted data sets

  • With networks estimated using graphical lasso, we observed that edges in cognitively normal (CN), edges in early mild cognitive impairment (EMCI), 381 edges in late mild cognitive impairment (LMCI) and 250 edges in AD were frequently estimated with non zero weights (Fig. 1)

Read more

Summary

Introduction

Alzheimer’s disease (AD) is one of the leading causes of death in the US and there is no validated drugs to stop, slow or prevent AD. Alzheimer’s disease (AD) is a major neurodegenerative disorder that has been characterized by gradual memory loss and brain behavior impairment. According to the latest report [1], an estimated number of 5.7 million aging Americans are living with Alzheimer’s and this number is expected to escalate in coming years given the rapid increase of aging population. To prevent this public health crisis, tremendous effort has been dedicated to discovery of effective AD biomarkers. Very few studies paid attention to the interactions and associations among the gene products and how they are gradually disrupted during AD progression [4, 5]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.