Abstract

During inflammatory processes the infected macrophage is a rich source of chemokines which induce infiltration of leukocytes to the site of infection. We investigated the regulation of chemokine production by murine macrophages in response to infection with the intracellular bacterial pathogen, Listeria monocytogenes. As a source of quiescent macrophages, murine bone marrow-derived macrophages (BMM) cultured under serum-free conditions were used. With RT-PCR, we detected induction of RNA message for the chemokines macrophage inflammatory protein (MIP)-2, KC, MIP-1alpha, MIP-1beta, IFN-gamma-inducible protein-10 and RANTES in L. monocytogenes-infected macrophages. Accordingly, ELISA-detectable MIP-1alpha, MIP-2 and KC protein was induced by infection with L. monocytogenes. In contrast, L. monocytogenes infection of BMM alone failed to induce considerable expression of monocyte chemoattractant protein (MCP)-1 at the mRNA or protein level, but co-treatment with IFN-gamma was necessary. Release of infection-triggered MIP-2, MIP-1alpha and KC was negatively regulated by IFN-gamma. Similarly, IL-4 stimulated MCP-1 release by infected macrophages but reduced production of MIP-1alpha, MIP-2 and KC. IL-10 turned out to be a general deactivator in terms of macrophage chemokine production. IL-13 had no effect on MIP-1alpha, MIP-2 and KC production by infected BMM, but slightly reduced MCP-1 release. By using IFN-gamma and IL-4 gene deletion mutant mice, in vivo regulation of these chemokines by IL-4 and IFN-gamma in listeriosis was studied. In summary, our results show that chemokines are produced by macrophages infected with L. monocytogenes, and that chemokine release is differentially regulated by the macrophage modulators IFN-gamma, IL-4, IL-10 and IL-13.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.