Abstract

BackgroundAvian influenza A (AI) viruses of subtypes H5 can cause serious disease outbreaks in poultry including panzootic due to H5N1 highly pathogenic (HP) viruses. These viruses are a threat not only for animal health but also public health due to their zoonotic potential. The domestic duck plays a major role in the epidemiological cycle of influenza virus subtypes H5 but little is known concerning host/pathogen interactions during influenza infection in duck species. In this study, a subtracted library from duck trachea (a primary site of influenza virus infection) was constructed to analyse and compare the host response after a highly or low pathogenic (LP) H5N1-infection.ResultsHere, we show that more than 200 different genes were differentially expressed in infected duck trachea to a significant degree. In addition, significant differentially expressed genes between LPAI- and HPAI-infected tracheas were observed. Gene ontology annotation was used and specific signalling pathways were identified. These pathways were different for LPAI and HPAI-infected tracheas, except for the CXCR4 signalling pathway which is implicated in immune response. A different modulation of genes in the CXCR4 signalling pathway and TRIM33 was induced in duck tracheas infected with a HPAI- or a LPAI-H5N1.ConclusionFirst, this study indicates that Suppressive Subtractive Hybridization (SSH) is an alternative approach to gain insights into the pathogenesis of influenza infection in ducks. Secondly, the results indicate that cellular gene expression in the duck trachea was differently modulated after infection with a LPAI-H5N1 or after infection with a HPAI-H5N1 virus. Such difference found in infected trachea, a primary infection site, could precede continuation of infection and could explain appearance of respiratory symptoms or not.

Highlights

  • Avian influenza A (AI) viruses of subtypes H5 can cause serious disease outbreaks in poultry including panzootic due to H5N1 highly pathogenic (HP) viruses

  • To overcome the fact that there was no release of the duck genome and no duck specific microarray, we focused on only differentially expressed genes by creating subtracted libraries from duck trachea and used them to set up a duck microarray for analysis of HPAI and LPAI H5N1 infection

  • To verify that infection occurred all along tracheas at 24 h p.i., LPAI-infected tracheas were cut into 3 parts and subjected to RNA extraction and to amplification of influenza matrix (M) segment using real-time RT-PCR as described in Materials and methods

Read more

Summary

Introduction

Avian influenza A (AI) viruses of subtypes H5 can cause serious disease outbreaks in poultry including panzootic due to H5N1 highly pathogenic (HP) viruses. These viruses are a threat for animal health and public health due to their zoonotic potential. The subtypes H5 and H7 of avian influenza A (AI) viruses can be both further divided into two groups of high or low pathogenic influenza A viruses (HPAI or LPAI, respectively) [2]. The H5 virus is enzootic in several Asian countries and represents one major concern for animal health and for public health due to its zoonotic and pandemic potential. HPAI H5N1 has been transmitted from poultry to humans and was responsible for the death of 374 people as reported by WHO the 26th April 2013 [6,7]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.