Abstract

In this study we describe how the hippocampus and subiculum act in concert to encode information in a spatial delayed-nonmatch-to-sample (DNMS) task. This encoding was functionally partitioned between neurons within subiculum and hippocampus to uniquely identify trial-specific information accounting for both spatial and temporal constraints on performance within and between trials. Encoding by subicular neurons in the task was normally accurate and specific, but only if delays were shorter than 15 s, whereas trial-specific information encoded by hippocampal neurons was subject to strong biases from prior trial sequences and was accessible only when delays exceeded 15 s. The two structures operated in a complementary manner to encode information correctly on 75% of all trials using the above strategies. The remaining 25% of trials were at risk due to inherent idiosyncrasies by which hippocampal and subicular neurons encoded information and became errors when the random sequence of trials conflicted with these constraints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.