Abstract
Differentiability is a convenient property of von Neumann-Morgenstern utility functions which is almost always imposed but has not been translated into behavioral terms. In applications, expected utility is usually maximized subject to a constraint, and the maximization is carried out by differentiating the utility function. This paper presents two sets of necessary and sufficient conditions for a risk averse von Neumann-Morgenstern utility function to be differentiable. The first of them is formulated in terms of the equivalent risk premia of small gambles. It says, in brief, that the equivalent risk premium is of a smaller order of magnitude than the risk itself, as measured by the expectation of the absolute value of the risk. The second set of necessary and sufficient conditions is formulated in terms of the probability premium of small lotteries. It says, essentially, that the probability premium for small binary lotteries goes to zero as the size of the lottery goes to zero.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.