Abstract
Sea anemones feed by discharging nematocysts into their prey, but the pathway for control of nematocyst discharge is unknown. The purpose of this study was to investigate the ultrastructural evidence of neuro-nematocyte synapses and to determine the types of synaptic vesicles present at different kinds of nematocyst-containing cells. The tip and middle of tentacles from small specimens of Aiptasia pallida were prepared for electron microscopy and serial micrographs were examined. We found clear vesicles in synapses on mastigophore-containing nematocytes and dense-cored vesicles in synapses on basitrich-containing nematocytes and on one cnidoblast with a developing nematocyst. In addition, we found reciprocal neuro-neuronal and sequential neuro-neuro-nematocyte synapses in which dense-cored vesicles were present. It was concluded that : (1) neuro-nematocyte synapses are present in sea anemones, (2) different kinds of synaptic vesicles are present at cells containing different types of nematocysts, (3) synapses are present on cnidoblasts before the developing nematocyst can be identified and these synapses may have a trophic influence on nematocyst differentiation, and (4) both reciprocal and sequential synapses are present at the nematocyte, suggesting a complex pathway for neural control of nematocyst discharge. J. Morphol. 238:53-62, 1998. © 1998 Wiley-Liss, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.