Abstract
BackgroundPrevious studies have shown that haemosporidian parasites (Haemoproteus (Parahaemoproteus) and Plasmodium) infecting passerine birds have an evolutionary history of host switching with little cospeciation, in particular at low taxonomic levels (e.g., below the family level), which is suggested as the main speciation mechanism of this group of parasites. Recent studies have characterized diverse clades of haemosporidian parasites (H. (Haemoproteus) and H. (Parahaemoproteus)) infecting non-passerine birds (e.g., Columbiformes, Pelecaniiformes). Here, we explore the cospeciation history of H. (Haemoproteus) and H. (Parahaemoproteus) parasites with their non-passerine hosts.MethodsWe sequenced the mtDNA cyt b gene of both haemosporidian parasites and their avian non-passerine hosts. We built Bayesian phylogenetic hypotheses and created concensus phylograms that were subsequently used to conduct cospeciation analyses. We used both a global cospeciation test, PACo, and an event-cost algorithm implemented in CoRe-PA.ResultsThe global test suggests that H. (Haemoproteus) and H. (Parahaemoproteus) parasites have a diversification history dominated by cospeciation events particularly at the family level. Host-parasite links from the PACo analysis show that host switching events are common within families (i.e., among genera and among species within genera), and occasionally across different orders (e.g., Columbiformes to Pelecaniiformes). Event-cost analyses show that haemosporidian coevolutionary history is dominated by host switching and some codivergence, but with duplication events also present. Genetic lineages unique to raptor species (e.g., FALC11) commonly switch between Falconiformes and Strigiformes.ConclusionsOur results corroborate previous findings that have detected a global cospeciation signal at the family taxonomic level, and they also support a history of frequent switching closer to the tips of the host phylogeny, which seems to be the main diversification mechanism of haemosporidians. Such dynamic host-parasite associations are relevant to the epidemiology of emerging diseases because low parasite host specificity is a prerequisite for the emergence of novel diseases. The evidence on host distributions suggests that haemosporidian parasites have the potential to rapidly develop novel host-associations. This pattern has also been recorded in fish-monogenean interactions, suggesting a general diversification mechanism for parasites when host choice is not restricted by ecological barriers.
Highlights
Previous studies have shown that haemosporidian parasites (Haemoproteus (Parahaemoproteus) and Plasmodium) infecting passerine birds have an evolutionary history of host switching with little cospeciation, in particular at low taxonomic levels, which is suggested as the main speciation mechanism of this group of parasites
Parasitologists long believed that avian haemosporidian parasites (including Haemoproteus (Parahaemoproteus) and Plasmodium) were host specific [6,7], recent studies have shown that haemosporidian parasites infecting passerine birds have an evolutionary history of host switching with little codivergence [2,8,9,10,11,12]
Following results of previous studies on passerine haemosporidians [2,9], we expected that Haemoproteus parasites infecting non-passerines are characterized by a cospeciation history at the family or higher taxonomic levels, and by a dynamic host switching pattern at the genus and species levels within families
Summary
Previous studies have shown that haemosporidian parasites (Haemoproteus (Parahaemoproteus) and Plasmodium) infecting passerine birds have an evolutionary history of host switching with little cospeciation, in particular at low taxonomic levels (e.g., below the family level), which is suggested as the main speciation mechanism of this group of parasites. Parasitologists long believed that avian haemosporidian parasites (including Haemoproteus (Parahaemoproteus) and Plasmodium) were host specific [6,7], recent studies have shown that haemosporidian parasites infecting passerine birds have an evolutionary history of host switching with little codivergence [2,8,9,10,11,12]. Following results of previous studies on passerine haemosporidians [2,9], we expected that Haemoproteus parasites infecting non-passerines are characterized by a cospeciation history at the family or higher taxonomic levels, and by a dynamic host switching pattern at the genus and species levels within families
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.