Abstract

A combination study of material modifications for the catastrophic laser-induced damage by 12 ns, 1064 nm laser pulse irradiation was investigated in air and vacuum environments. The samples were observed by optical microscope, scanning electron microscopy, laser micro-Raman spectroscopy, photoluminescence spectrum; moreover 2D numerical calculations were performed. According to our results, vacuum pumping induced higher laser field intensities, accompanying with more absorption of laser energy in the laser-induced damage process. All of these resulted in the material melting and subsequent re-solidification in the laser-damaged core in vacuum. While, in the air conditions, plasma expanding due to material heating and associated thermal expansion induced a large stress field, which caused the material deformation and formation of delamination and crack in the laser-damage region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.