Abstract

In this work a poly 4-vinlyphenol (PVP)/graphene composite film is fabricated by two different approaches i.e. blended and decorated (layer-by-layer i.e. LBL), using a reasonably inexpensive and less material consuming electrohydrodynamic atomization technique. Surface morphology of the fabricated composite film has been characterized by field emission scanning electron microscope and 3D Nano mapping. It has been observed that the film is uniform and has no voids and pores. Transmittance has been measured by UV–Visible spectroscopy, which showed nearly ~88.5 % of transparency in the visible region. PVP/graphene film has sandwiched as dielectric layer between indium tin oxide and poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT: PSS) as bottom and top electrodes, respectively, for capacitance measurement. PVP decorated graphene flakes (LBL) film showed better capacitance (1.22 × 10−2 F/cm2) at 1 kHz in the voltage range of 0.1–0.2 V relative to a capacitance of 4.78 × 10−7 F/cm2 at 1 kHz in the voltage range of −0.16 to 0.060 V fabricated by blended approach. It has been noticed that even at higher frequencies, a stable behavior as dielectric was observed. Besides this, a stable behavior was observed with the PVP/graphene (LBL) film even at higher frequencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.