Abstract
BackgroundPerioperative neuro-cognitive disorders (PND) are preoperative and postoperative complications of multiple nervous systems, typically manifested as decreased memory and learning ability after surgery. It was used to replace the original definition of postoperative cognitive dysfunctions (POCD) from 2018. Our previous studies have shown that sevoflurane inhalation can lead to cognitive dysfunction in Sprague-Dawley rats, but the specific mechanism is still unclear.Material/MethodsThirty-six male Sprague-Dawley rats were randomly divided into 6 groups (n=6): the SD group was given 24-h acute sleep deprivation; Sevoflurane was inhaled for 2 h in the Sevo group. Two mL propofol was injected into the tail vein of rats in the Prop group. The rats in the SD+Sevo group and SD+Prop group were deprived of sleep before intervention in the same way as before.ResultsWe noted significant behavioral changes in rats treated with SIK3 inhibitors or tau phosphorylation agonists before propofol injection or sevoflurane inhalation, with associated protein levels and dendritic spine density documented. Sevoflurane anesthesia-induced cognitive impairment following acute sleep deprivation was more pronounced than sleep deprivation-induced cognitive impairment alone and resulted in increased brain SIK3 levels, increased phosphorylation of total tau and tau, and decreased acetylation modifications. After using propofol, the cognitive function returned to baseline levels with a series of reversals of cognitive dysfunction.ConclusionsThese results suggest that sevoflurane inhalation via the SIK3 pathway aggravates cognitive impairment after acute sleep deprivation and that propofol anesthesia reverses the effects of sleep deprivation by affecting modifications of tau protein.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Medical science monitor : international medical journal of experimental and clinical research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.