Abstract

There have been no previous reports of tendon tissue engineering using mesenchymal stem cells (MSCs) with regard to quantitative evaluation of protein expression levels and observation of derived extracellular matrix (ECM) state. Therefore, we approached tendon tissue engineering from both perspectives. Human bone marrow MSCs (hBMSCs) were subjected to 8% or 10% cyclic stretching at 1 Hz to promote differentiation into tenocytes and ECM production. The type I collagen (Col I) and Tenascin-C (Tnc) protein expression levels were evaluated quantitatively by enzyme-linked immunosorbent assay (ELISA). Confocal fluorescence microscopy was employed to observe the derived ECM state. Col I state derived from 10%-stretched cells as ECM was elongated like actual tendon ECM, although the quantitative protein expression levels were slightly higher in 8%-stretched cells. The results suggested that the optimal uniaxial stretching ratio was different between protein expression levels and derived ECM state. Therefore, it is important to pay attention to both protein expression levels and ECM state in tendon tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.