Abstract

In this paper, we introduce a novel approach in the nonconvex optimization framework for image restoration via a Markov random field (MRF) model. While image restoration is elegantly expressed in the language of MRF’s, the resulting energy minimization problem was widely viewed as intractable: it exhibits a highly nonsmooth nonconvex energy function with many local minima, and is known to be NP-hard. The main goal of this paper is to develop fast and scalable approximation optimization approaches to a nonsmooth nonconvex MRF model which corresponds to an MRF with a truncated quadratic (also known as half-quadratic) prior. For this aim, we use the difference of convex functions (DC) programming and DC algorithm (DCA), a fast and robust approach in smooth/nonsmooth nonconvex programming, which have been successfully applied in various fields in recent years. We propose two DC formulations and investigate the two corresponding versions of DCA. Numerical simulations show the efficiency, reliability and robustness of our customized DCAs with respect to the standard GNC algorithm and the Graph-Cut based method—a more recent and efficient approach to image analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.