Abstract

Among tennis coaches and players, the standard volley and drop volley are considered basically similar, but muscles need to be relaxed (deactivation) just at the moment of impact when hitting the drop volley. However, this is not evidence-based. The aim of this study was to clarify racket head trajectory and muscle activity during the drop volley and to compare them with those of the standard volley. We hypothesized that 1) the racket head would move less forward for the drop volley than for the standard volley and 2) the wrist and elbow muscles be relaxed for the drop volley at the time of ball impact. Eleven male college students with sufficient tennis experience volunteered to participate in this study. Wireless EMG sensors recorded activation of the four arm muscles. Each subject performed the standard volley or the drop volley with both a forehand and a backhand from a position near the net. Four high speed video cameras (300 Hz) were set up on the court to measure ball speed and racket head trajectory. Returned ball speed of the drop volley was significantly lower than that of the standard volley (p < 0.05). The racket head moved less forward than in the standard volley, supporting the first hypothesis. Muscle activity of the drop volley, just before and after ball impact for both the forehand and backhand, was lower than that of the standard volley. However, the activity was in the form of a gradual increase as impact time approached, rather than a sudden deactivation (relaxation), which did not support the second hypothesis. For the drop volley, lower muscle activity in the forearm enabled a softer grip and thus allowed a "flip" movement of the racket to diminish the speed of the returned ball.

Highlights

  • In tennis, when players are near or approaching the net, the shot they take most often involves a volley, which is a shot taken before the ball bounces

  • Paired t-test revealed that ball speed of the drop volley was significantly lower than that of the standard volley

  • Averaged percent ball speeds of the standard volley was about 100%, but for the drop volley it was only about 40%

Read more

Summary

Objectives

The aim of this study was to clarify racket head trajectory and muscle activity during the drop volley and to compare them with those of the standard volley. The purpose of this study was to fill in this lack of knowledge, which would contribute to a basic understanding of the movement and aid coaches in teaching how to execute the drop volley, since it is a very difficult shot for beginners. The purpose of this study was to analyze racket movement and muscle activity in the drop volley as compared with those of the standard volley

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.