Abstract
In this article, the authors introduce the spaces of Lipschitz type on spaces of homogeneous type in the sense of Coifman and Weiss, and discuss their relations with Besov and Triebel–Lizorkin spaces. As an application, the authors establish the difference characterization of Besov and Triebel–Lizorkin spaces on spaces of homogeneous type. A major novelty of this article is that all results presented in this article get rid of the dependence on the reverse doubling assumption of the considered measure of the underlying space \({{\mathcal {X}}}\) via using the geometrical property of \({{\mathcal {X}}}\) expressed by its dyadic reference points, dyadic cubes, and the (local) lower bound. Moreover, some results when \(p\le 1\) but near to 1 are new even when \({{\mathcal {X}}}\) is an RD-space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.