Abstract
The theorem of J. Moser that any two volume elements of equal total volume on a compact manifold are diffeomorphism-equivalent is extended to noncompact manifolds: A necessary and sufficient condition (equal total and same end behavior) is given for diffeomorphism equivalence of two volume forms on a noncompact manifold. Results on the existence of embeddings and immersions with the property of inducing a given volume form are also given. Generalizations to nonorientable manifolds and manifolds with boundary are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.